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Abstract—A multimode network consists of heterogeneous types of actors with various interactions occurring between them.

Identifying communities in a multimode network can help understand the structural properties of the network, address the data

shortage and unbalanced problems, and assist tasks like targeted marketing and finding influential actors within or between groups. In

general, a network and its group structure often evolve unevenly. In a dynamic multimode network, both group membership and

interactions can evolve, posing a challenging problem of identifying these evolving communities. In this work, we try to address this

problem by employing the temporal information to analyze a multimode network. A temporally regularized framework and its

convergence property are carefully studied. We show that the algorithm can be interpreted as an iterative latent semantic analysis

process, which allows for extensions to handle networks with actor attributes and within-mode interactions. Experiments on both

synthetic data and real-world networks demonstrate the efficacy of our approach and suggest its generality in capturing evolving

groups in networks with heterogeneous entities and complex relationships.

Index Terms—Data mining, community detection, community evolution, multimode networks, dynamic networks.
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1 INTRODUCTION

OWING to the widely available network data produced
from social networks, technology networks, informa-

tion networks and genetic regulatory networks [2], network
analysis [3] and modeling [4] are attracting increasing
attention from many fields. Examples include epidemiology
[5], intelligence analysis [6], targeted marketing, recom-
mendation systems [7], relational learning [8], and behavior
prediction [9].

A large body of existing work deals with networks of
one mode. That is, only one type of actors (nodes) is
present in a network, and the connections (interactions)
between actors are of the same type. This is common for
friendship networks and mobile networks. Recently,
burgeoning applications such as web mining, collaborative
filtering, and online targeted marketing involve more than
one type of entities. Between them are different types of
interaction. This kind of network is called multimode
network [3] (a.k.a. heterogeneous network).

1.1 Multimode Networks

Take the network in YouTube as an example. A 3-mode
network (shown in Fig. 1) can be constructed: users, videos,
and tags. Note that in this network, both videos and tags are
considered “actors” as well, although the user might be the
major mode under consideration. Different interactions

exist between the three types of entities: users can upload
videos; users can add tags to a video. Videos and tags are
naturally correlated to each other. Meanwhile, a friendship
network exists between users, and a video clip can be
uploaded to respond to another video. Tags can also
connect to each other based on their semantic meanings.
In other words, multiple types of entities exist in the same
network, and entities relate to others (either the same type
or different types) through different links.

Another example of multimode network is the field of
academia as shown in Fig. 2. Assorted entities (researchers,
conference/journals, papers, words) are intertwined with
each other. The scientific literature connects papers by
citations; papers are published at different places (confer-
ences, journals, workshops, thesis, etc.); and researchers are
connected to papers through authorship. Some might also
relate to each other by serving simultaneously as journal
editors or on conference program committees. Moreover,
each paper can focus on different topics represented by
words. Words are associated to each other based on
semantics. At the same time, papers are connected to
different conferences and journals.

Within a multimode network, different types of entities
tend to form groups or communities.1 In the YouTube
example, users sharing similar interests are more likely to
form a group; videos are clustered naturally if they relate to
similar contents; and tags are clustered if they are
associated with similar users and videos. Generally, a user
group may interact with multiple groups of another mode,
i.e., users might have multiple interests, thus relating to
various video or tag groups.

Multimode networks present entities in interrelated
forms. One might wonder whether it is necessary to
consider this multimode property. For instance, in the
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YouTube example, can we focus only on friendship net-
work between users? If so, we might miss information from
other modes. Online social networks tend to be noisy, some
users might have thousands of online friends while a
substantial number of users might connect to only one or no
friends. On the other hand, users might engage in various
other activities like uploading videos and adding tags.
Information distilled from other modes can help uncover
the latent community structure of users.

Some work has been done to identify communities in a
network of heterogeneous entities or relations [10], [11], [12]
in terms of multitype relational clustering. However, these
methods concentrate on static networks. In reality, net-
works tend to evolve gradually. The communities inside a
network could grow or shrink, and the membership for
specific actors shift gradually as well [13], [14], [15], [16].
This presents a challenge to identify group evolutions.

1.2 Group Evolution

In a multimode network, actors of different modes can
evolve differently. For instance, in the previous academia
example, interactions between different modes change
every year. Within the network, researchers can divert
their personal research interests, and the “hot” topics of a
field may also change. On the contrary, communities of
mode “journals/conferences” tend to be stable. But two
venues may also connect due to the topic change. For
instance, social network analysis joins researchers from
diverse fields recently, thus making those journals on
social sciences more related to magazines concentrating on
data mining.

Facing heterogeneous entities with dynamic interactions,
discovering evolving groups can lead to a clear under-
standing of interaction between disparate modes as well as
long-term evolution patterns. This can benefit visualization
of a complex network with heterogeneous entities and
interactions, aid decision making in various domains, and
signal an event alarm if undesirable evolution patterns are
observed in the early stage. For example, to detect user
interests shift for more effective targeted marketing, or to
detect suspicious financial activities if an abnormal change
in transactions is detected.

However, the problem of discovering community evolu-
tion becomes challenging in dynamic multimode networks
because 1) the evolutions of different modes become
correlated; and 2) disparate modes demonstrate distinctive

evolution patterns. In this work, we propose a general
model to identify evolving groups in dynamic multimode
networks. A spectral clustering framework is adopted. A
dynamic multimode network consists of a series of network
snapshots. We aim to find out how a community evolves.
In this model, a regularization term is added to reflect the
effect of temporal change. It is shown that clustering results
of interacted modes and neighboring timestamps can be
considered as attributes for updating communities of one
mode. This is a novel way of connecting dynamic multi-
mode network analysis to conventional attribute-based
data mining. An iterative algorithm, which does not suffer
from hardware constraints even with tens of thousands
actors, is presented to find an optimal solution of the
model. The experiments on both synthetic and real-world
large-scale network data demonstrate the efficacy of our
algorithm and suggest its generality in solving problems
with complex relationships.

The paper is organized as follows: we present a general
framework to find community evolution in dynamic
multimode networks in Section 2, introduce an iterative
solver in Section 3 and study its convergence property in
Section 4. In Sections 5 and 6, we report extensive
experiments on both synthetic and real-world data to
study the efficacy and efficiency of our framework. We
review some related literature in Section 7 and conclude in
Section 8.

2 PROBLEM FORMULATION

In order to extract communities in a multimode network,
we follow the framework presented in [11]. Given an m-
mode network with m types of actors XX1;XX2; . . . ;XXm, we
aim to find how the latent community of each mode
evolves. In our framework, we only consider discrete
timestamps by taking a series of snapshots, which is
commonly adopted in network analysis with temporal
information [15], [16]. For a snapshot at time t, a network Nt

is represented as multiple interactions between different
modes. Let Rt

i;j 2 IRni�nj denote the interaction between two
modes XXi and XXj at timestamp t, ni, and nj the number of
actors at mode i and j, ki and kj the number of latent
communities for XXi and XXj, respectively. We will review
the concept of block model approximation for community
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Fig. 2. A multimode network of academic publications.

Fig. 1. An example of 3-mode network in YouTube.



discovery and discuss incorporating temporal regulariza-

tion for dynamic multimode networks. For simplicity, the

discussion below does not consider within-mode interac-

tions. Extensions to handle within-mode interactions are

discussed later. For presentation convenience, symbols used

in the subsequent derivation are listed in Table 1.

2.1 Community Discovery via Block Model
Approximation

In order to extract communities at each mode, we assume
interactions between modes can be approximated by
interactions between groups [17], [18]. This basic idea can
be visualized in Fig. 3. In the figure, the network on the left
shows the interactions between two modes, each with 400
and 600 actors, respectively. The one on the right
demonstrates the effect after we reorder the actors accord-
ing to their latent community membership. After reorder-
ing, it shows a crisp block structure. Thus, we can
approximate the original network through interaction
blocks. In particular,

Rt
i;j � Cði;tÞAt

i;jðCðj;tÞÞ
T ;

where Cði;tÞ 2 f0; 1gni�ki denotes latent cluster (block)

membership for XXi at timestamp t, and Ai;j represents the

density of group (block) interaction. In other words, the

group membership determines how two actors interact.

This essentially hinges on a similar assumption as stochastic

block models [19]. The difference is that stochastic block

models deal with the problem from a probabilistic aspect.

Here, we identify the block structure of multimode net-

works via matrix approximation:

min kRt
i;j � Cði;tÞAt

i;jðCðj;tÞÞ
Tk2

F ð1Þ

s:t: Cði;tÞ 2 f0; 1gni�ki ;
Xki
k¼1

C
ði;tÞ
�k ¼ 1; ð2Þ

Cðj;tÞ 2 f0; 1gnj�kj ;
Xkj
k¼1

C
ðj;tÞ
�k ¼ 1: ð3Þ

The constraints in (2) and (3) force each row of the indicator

matrix to have only one entry being 1. That is, each actor

belongs to only one community. Unfortunately, the dis-

creteness of the constraints makes the problem NP-hard. A

strategy that has been well studied in spectral clustering

[20] is to allow the cluster indicator matrix to be continuous
and relax the hard clustering constraint as follows:

ðCði;tÞÞTCði;tÞ ¼ Iki :

In a multimode network, diverse interactions occur between
different modes. Hence, the objective in (1) can be changed to

min
X

1�i<j�m
wði;jÞa kRt

i;j � Cði;tÞAt
i;jðCðj;tÞÞ

Tk2
F ; ð4Þ

with wði;jÞa being the weights associated with different
interactions.

2.2 Community Discovery with Network Sequence

With a dynamic multimode network, we have multiple
snapshots of the network. Naturally, the objective function
without considering its temporal effect can be formulated
as F1:

min
XTT
t¼1

X
1�i<j�m

wði;jÞa kRt
i;j � Cði;tÞA

t
i;jðCðj;tÞÞ

Tk2
F ð5Þ

s:t: ðCði;tÞÞTCði;tÞ ¼ Iki i ¼ 1; . . . ;m; t ¼ 1; . . . TT. ð6Þ

Then, we have the following theorem.

Theorem 1. Let Cði;tÞ; 1 � i � m; 1 � t � TT be a valid solution
of F1, then eCði;tÞ defined below is also a valid solution with the
same objective value

eCði;tÞ ¼ Cði;tÞQði;tÞ;
s:t: ðQði;tÞÞTQði;tÞ ¼ Qði;tÞðQði;tÞÞT ¼ Iki ;

Qði;tÞ 2 IRki�ki :

Proof. It suffices to show that the value of each single term
in F1 does not change. Given a solution Cði;tÞ and At

i;j, we
can choose eAt

i;j ¼ ðQði;tÞÞ
TAt

i;jQ
ðj;tÞ, then

eCði;tÞ eAt
i;jð eCðj;tÞÞT ¼ Cði;tÞAt

i;jðCðj;tÞÞ
T ;

which completes the proof. tu

2.3 Community Discovery with Temporal
Regularization

The formulation F1 does not consider the relationship
between consecutive timestamps. Solving F1 boils down to
perform clustering at each snapshot independently. In
reality, communities tend to evolve gradually. To obtain
smooth community evolution, we add a temporal regular-
ization term � which forces the clustering sequence to be
smooth across different timestamps
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Fig. 3. Networks before and after reordering.

TABLE 1
Symbols and Denotations



� ¼ 1

2

XTT
t¼2

kCði;tÞðCði;tÞÞT � Cði;t�1ÞðCði;t�1ÞÞTk2
F : ð7Þ

Here, the coefficient 1=2 is included due to notational
conveniences for later derivation. Indeed, we are making a
first-order Markov assumption. That is, the current cluster-
ing should be similar to the clustering at the previous
timestamp. Note that we do not take the regularization as

� ¼
XTT
t¼2

kCði;tÞ � Cði;t�1Þk2
F ; ð8Þ

which seems more natural at first glimpse. As demon-
strated in Theorem 1, Cði;tÞ is equivalent under an
orthogonal transformation. Hence, comparing Cði;tÞ and
Cði;t�1Þ directly as in (8) does not necessarily capture the
difference between the cluster indicators at different time-
stamps. On the contrary, the regularization term of (7) is
independent of the orthogonal transformation, thus cap-
tures the difference of community structure of neighboring
timestamps. With this regularization, the problem of
identifying evolving groups can be formulated as

F2 : min
XTT
t¼1

X
i<j

wði;jÞa kRt
i;j � Cði;tÞA

t
i;jðCðj;tÞÞ

Tk2
F

þ 1

2

Xm
i¼1

w
ðiÞ
b

XTT
t¼2

kCði;tÞðCði;tÞÞT � Cði;t�1ÞðCði;t�1ÞÞTk2
F

ð9Þ

s:t: ðCði;tÞÞTCði;tÞ ¼ Iki ; i ¼ 1; . . . ;m; t ¼ 1; . . . TT, ð10Þ

with w
ðiÞ
b being the trade-off between the block model

approximation of interactions and the temporal regulariza-
tion. As evolution takes effect gradually, we aim to find a
community structure that is consistent with interaction
matrix, whereas not drastically different from that of the
previous timestamp.

3 TEMPORALLY REGULARIZED MULTIMODE

CLUSTERING

To capture evolving groups in dynamic multimode net-
works, we have to solve F2. There is no analytical solution
to the problem, but an iterative algorithm can be derived.
We show that a closed-form solution exists for At

i;j and Cði;tÞ

if other variables are fixed. Then we present the algorithm
in an attribute view for easy comprehension and extension.

3.1 Computation of A

Theorem 2. Given Cði;tÞ, the optimal group interaction matrix
At
i;j can be calculated as

At
i;j ¼ ðCði;tÞÞ

TRt
i;jC

ðj;tÞ:

Proof. Since At
i;j is only involved in one term in F2, we can

focus on the single term to optimize At
i;j

kRt
i;j � Cði;tÞA

t
i;jðCðj;tÞÞ

Tk2
F

¼ tr
��
Rt
i;j � Cði;tÞA

t
i;jðCðj;tÞÞ

T ��Rt
i;j � Cði;tÞA

t
i;jðCðj;tÞÞ

T �T �
¼ tr

�
Rt
i;j

�
Rt
i;j

�T � 2Cði;tÞAt
i;jðCðj;tÞÞ

T �Rt
i;j

�T þAt
i;j

�
At
i;j

�T �
:

The last equation follows as trðABÞ ¼ trðBAÞ and Cði;tÞ

and Cðj;tÞ are column orthogonal as in (10). Taking the

derivative of the last equation with respect to At
i;j to zero,

we have

At
i;j ¼ ðCði;tÞÞ

TRt
i;jC

ðj;tÞ:

The proof is completed. tu

3.2 Computation of C

Given the optimal At
i;j, it can be verified that

kRt
i;j � Cði;tÞAt

i;jðCðj;tÞÞ
Tk2

F

¼ kRt
i;jk

2
F � kðCði;tÞÞ

TRt
i;jC

ðj;tÞk2
F :

ð11Þ

Meanwhile,

1

2
kCði;tÞðCði;tÞÞT � Cði;t�1ÞðCði;t�1ÞÞTk2

F

¼ 1

2
tr Cði;tÞðCði;tÞÞT þ Cði;t�1ÞðCði;t�1ÞÞT
h

� 2Cði;tÞðCði;tÞÞTCði;t�1ÞðCði;t�1ÞÞT
i

¼ ki � kðCði;tÞÞTCði;t�1Þk2
F :

ð12Þ

Since kRt
i;jk

2
F in (11) and ki in (12) are constants, we can

transform F2 into the following objective:

F3 : max
XTT
t¼1

Xm
l�i<j�m

wði;jÞa kðCði;tÞÞ
TRt

i;jC
ðj;tÞk2

F

þ wðiÞb
XTT
t¼2

Xm
i¼1

kðCði;tÞÞTCði;t�1Þk2
F :

ð13Þ

Note that Cði;tÞ is interrelated with both Cðj;tÞ and Cði;t�1Þ.

In general, there is no analytical closed-form solution. But

the optimal Cði;tÞ can be obtained directly if Cðj;tÞ and Cði;t�1Þ

are given, which is stated in the following theorem.

Theorem 3. Given Cðj;tÞ and Cði;t�1Þ, Cði;tÞ can be computed as

the top left singular vectors of the matrix Pt
i concatenated by

the following matrices in column-wise:

Pt
i ¼

ffiffiffiffiffiffiffiffiffiffi
w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

j 6¼i
;

ffiffiffiffiffiffiffiffi
w
ðiÞ
b

q
Cði;t�1Þ

" #
: ð14Þ

Proof. We focus only on those terms involving Cði;tÞ in the

objective function. Without loss of generality, we discuss

the cases when 2 � t � TT� 1 first

L ¼
X
i<j

wði;jÞa kðCði;tÞÞ
TRt

i;jC
ðj;tÞk2

F

þ
X
k<i

wðk;iÞa kðCðk;iÞÞTRt
k;iC

ði;tÞk2
F

þ wðiÞb kðCði;tÞÞ
TCði;t�1Þk2

F

þ wðiÞb kðCði;tþ1ÞÞTCði;tÞk2
F

¼ tr½ðCði;tÞÞTMt
iC
ði;tÞ�;

ð15Þ
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where Mt
i is defined as

Mt
i ¼

X
i<j

wði;jÞa Rt
i;jC

ðj;tÞðCðj;tÞÞT ðRt
i;jÞ

T

þ
X
k<i

wðk;iÞa ðRt
k;iÞ

TCðk;tÞðCðk;tÞÞTRt
k;i

þ wðiÞb Cði;t�1ÞðCði;t�1ÞÞT

þ wðiÞb Cði;tþ1ÞðCði;tþ1ÞÞT :

ð16Þ

So the problem boils down to a max-trace problem with
orthogonality constraint as in (6). According to Ky-Fan
theorem [21], this max-trace problem has a closed-form
solution, which corresponds to the subspace spanned by
the top ki eigenvectors of Mt

i .
Note that Mi is a square symmetric matrix of size

ni � ni. When the number of actors in a mode XXi is huge,
direct calculating Mt

i and its eigenvectors can be
problematic. Alternatively, we represent Mt

i in the
following matrix form:

Mt
i ¼ Pt

i � ðPt
i Þ
T ; ð17Þ

where Pt
i is concatenated by the following matrices in

column-wise (the order of terms does not matter):

Pt
i ¼

ffiffiffiffiffiffiffiffiffiffi
w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

i<j

;ffiffiffiffiffiffiffiffiffiffiffi
w
ðk;iÞ
a

q
ðRt

k;iÞ
TCðk;tÞ

� �
k<i

;ffiffiffiffiffiffiffiffi
w
ðiÞ
b

q
Cði;t�1Þ;ffiffiffiffiffiffiffiffi

w
ðiÞ
b

q
Cði;tþ1Þ

266666666664

377777777775
¼

ffiffiffiffiffiffiffiffiffiffi
w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

j6¼i
;

ffiffiffiffiffiffiffiffi
w
ðiÞ
b

q
Cði;t�1Þ

" #
:

For t ¼ 1 or t ¼ TT, we only need to keep Cði;tþ1Þ or
Cði;t�1Þ, respectively, instead of Cði;t�1Þ. Typically, the size
of Pt

i is much smaller compared to Mt
i if the number of

clusters of each mode is small. Let the singular value
decomposition (SVD) of Pi as Pt

i ¼ U�V , then
Mt

i ¼ U�2UT . That is, the top left-singular vectors of Pt
i

correspond to the top eigenvectors of Mt
i , which

completes the proof. tu

3.3 Algorithm in Attribute View

To solve the problem F3 in (13), we resort to alternating
optimization. That is, we fix all the other variables while
solving Cði;tÞ. This process is iterated until convergence.2

After convergence, fCði;tÞg are the approximate community
indicator matrices. One problem to be addressed is to recover
the discrete partition of communities. One commonly used
postprocessing scheme is to apply k-means clustering to the
community indicators [22]. Combined with the results of
previous sections, we have the temporally regularized
multimode clustering algorithm as shown in Fig. 4.

Interestingly, the algorithm can be interpreted in an
attribute view and each step to update Cði;tÞ corresponds to
a process of latent semantic analysis (LSA). According to

Theorem 3, the community indicator Ct
i corresponds to the

left singular vectors of Pt
i , which is defined as in (14).

Consider Pt
i as normal instance-attribute matrix, then

finding out the community indicator is essentially equiva-
lent to perform latent semantic analysis [23].

LSA is commonly used in text analysis to capture latent
semantic relationship between terms. Given a document-
term matrix, LSA relies on singular value decomposition to
extract lower-dimensional embeddings of documents and
the relationship between different terms. Our problem takes
the same procedure as LSA, but the so-called “document-
term” matrix is constructed based on the community
indicators of interacting modes and neighboring timestamps
as in (14). That is, to capture the community structure of one
mode at one timestamp, the community indicators of its
interacting modes and neighboring timestamps form the
features. And the approximate clustering is equivalent to the
lower-dimensional embedding obtained via LSA.

This naturally connects the analysis of dynamic multi-
mode networks to attribute-based data analysis as in
conventional data mining. The key difference is that the
“features” in multimode networks are dynamically updated
based on “features” of other modes and timestamps, which
are obtained via LSA. This iterative-LSA process is repeated
until an equilibrium state is reached. An overview of our
algorithm in attribute view is illustrated in Fig. 5.

3.4 Extensions to Real-World Networks

With an attribute view to interpret our proposed algorithm,
it is simple to extend our framework to handle multimode
networks with various properties.

3.4.1 Actor Attributes

The attribute view of the algorithm allows for the integra-
tion of entity attributes in a convenient way. When a
multimode network has attributes for certain modes of
actors, we can simply add these attributes as features in Pt

i

(14) when updating the cluster indicator matrix. That is,

fPt
i ¼

ffiffiffiffiffiffiffiffiffiffi
w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

j 6¼i
;

ffiffiffiffiffiffiffiffi
w
ðiÞ
b

q
Cði;t�1Þ;

ffiffiffiffiffiffiffiffi
w
ðiÞ
c

q
Ft
i

" #
;

where Ft
i denotes the attributes for actors in mode i, and

wðiÞc the weight for actor attributes.
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2. The convergence property will be discussed in detail in Section 4.

Fig. 4. Algorithm: temporally regularized multimode clustering.



3.4.2 Higher Order Temporal Regularization

In our formulation, we make the first-order Markov
assumption that a community snapshot should be similar
to its previous snapshot. In some domains, it might be
necessary to include higher order temporal regularization.
An ‘th order temporal regularization enforces the commu-
nity structure at timestamp t to be similar to that of t� 1,
t� 2, . . . , t� ‘. Based on the attribute view of the algorithm,
we just need to modify Pt

i as follows to reflect the higher
order dependencyffiffiffiffiffiffiffiffiffiffi

w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

j6¼i
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
ðiÞ
b �

k�1

q
Cði;t�kÞ

� �
k¼1;...;‘

" #
:

Here, 0 < � � 1 is a decay factor to tune the regularization
effect of different snapshots. Those snapshots that are close
to current timestamp play a more important role in
regularization.

3.4.3 Within-Mode Interactions

In certain scenarios, within-mode interactions might occur:
e.g., the interactions in the friendship network of the 3-
mode network in YouTube (Fig. 1) and those in the paper
citations in the example of academic publications (Fig. 2).
As we have shown, Pt

i represents the attributes for
clustering. Then, Mt

i ¼ Pt
i ðPt

i Þ
T is like a similarity matrix

between data instances. So for an undirected within-mode
interaction, we can just add the within-mode interaction
matrix to Mt

i (16)

fMt
i ¼

X
i<j

wði;jÞa Rt
i;jC

ðj;tÞðCðj;tÞÞT
�
Rt
i;j

�T
þ
X
k<i

wðk;iÞa

�
Rt
k;i

�T
Cðk;tÞðCðk;tÞÞTRt

k;i

þ wðiÞb Cði;t�1ÞðCði;t�1ÞÞT

þ wðiÞb Cði;tþ1ÞðCði;tþ1ÞÞT

þ wðiÞc Rt
i;i:

Here, Rt
i;i denotes the within-mode interaction of mode i at

time t, and wðiÞc denotes the weight associated with the
within-mode interaction.

3.4.4 Dormant and Emerging Actors

Some actors might become inactive at a certain time period.
Meanwhile, new actors might join the network at a specific
timestamp. The framework earlier assumes actors do not
change. Here, we analyze more realistic cases where actors
become dormant or join a network.

Note that our derived algorithm just uses Cði;t�1Þ as
attributes for current timestamp. When an actor leaves or
hibernates at certain timestamp, we can delete his corre-
sponding entry in Cði;t�1Þ when updating Cði;tÞ. However,
after deletion, the orthogonality constraints might not be
satisfied. Since our framework is an approximation to hard
clustering, a tiny deviation from orthogonality does not
affect the performance. However, when many actors
become inactive, the total weights of remaining actors in
Cði;t�1Þ is relatively small, thus playing a less important role
in the computation of the similarity matrix Mt

i in (16). This
is reasonable. A drastic membership change denotes the
latent community is experiencing an “overhaul,” thus it is
not necessary to overregularize the temporal change. When
mode XXi at timestamp t has new actors, we simply set their
entries in Cði;t�1Þ to 0.

3.4.5 Online Clustering

In some real-world scenarios, one might need to track the
group evolution in an online fashion, and the algorithm
should be modified accordingly. Instead of iteratively
updating Cði;tÞ, we update the community structure at
different timestamps only once. Moreover, the correspond-
ing updating matrix Pt

i and Mt
i involve only fixed Cði;t�1Þ,

but not Cði;tþ1Þ. That is,

fPt
i ¼

ffiffiffiffiffiffiffiffiffiffi
w
ði;jÞ
a

q
Rt
i;jC

ðj;tÞ
� �

j 6¼i
;

ffiffiffiffiffiffiffiffi
w
ðiÞ
b

q
Cði;t�1Þ

" #
:

In summary, actor attributes, community structure at
different snapshots and within-mode interactions provide
additional information for community detection. Based on
the attribute view of our proposed algorithm, all these
information can be considered as “attributes” or “similarity
matrix” for computing community indicator matrix.

4 CONVERGENCE ANALYSIS

In the previous section, we provide an iterative algorithm to
find communities in dynamic multimode networks. In this
section, we present its convergence properties.

Theorem 4. The objective of formulation F2 in (9) following the
temporally regularized multimode clustering algorithm in
Fig. 4 is guaranteed to converge.

Proof. Our algorithm essentially implements an alternating
optimization strategy for each Cði;tÞ. At each step, we find
an optimal solution for one variable while fixing the
other variables. Hence, the objective F2 is nonincreasing.
Since the objective of F2 has a lower bound 0, it must
converge to a constant value. tu

However, it is impractical to compute F2 explicitly.

The involved terms Rt
i;j � Cði;tÞAt

i;jðCðj;tÞÞ
T is a full matrix

of size ni � nj. The temporal regularization term
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Fig. 5. Algorithm in attribute view: iterative-LSA.



Cði;tÞðCði;tÞÞT � Cði;t�1ÞðCði;t�1ÞÞT is also huge, of size

ni � ni. It can be problematic to compute them as that

might require excessive computational resource. Alterna-

tively, we can compute the equivalent formulation F3 in

(13). It involves matrices of size ki � kj or ki � ki. Since

ki << ni, F3 can be computed much more efficiently.
Though the objective converges to a constant, it does not

necessarily indicate that the algorithm converges to a (local)
optimal, whose gradient is nonnegative (nonpositive) along
with any direction within the feasible domain for a
minimization (maximization) problem. For certain problems,
the objective function approaches a constant value while the
solution is far from even a local optimal (refer to [24] for
concrete examples). Below, we further examine the conver-
gence property in terms of community indicators fCði;tÞg.

It can be shown that Ct
i is guaranteed to converge to a

local stationary point under mild conditions. Let Qði;tÞ ¼
Cði;tÞðCði;tÞÞT . Then we have some weak convergence result
with respect to fQði;tÞg. The formulation F3 in (13) can be
reformulated in terms of fQði;tÞg as follows:

F4 : max
XTT
t¼1

Xm
1�i<j�m

wði;jÞa tr½Qðj;tÞRT
i;jQ

ði;tÞRi;j�

þ wðiÞb
XTT
t¼2

Xm
i¼1

tr½Qði;tÞQði;t�1Þ�

ð18Þ

s:t: Qði;tÞ 2 M; i ¼ 1; . . . ;m; t ¼ 1; . . . ;TT,
Mði;tÞ ¼ fSjS ¼ Cði;tÞðCði;tÞÞTg: ð19Þ

It can be shown that Qði;tÞ converges to a coordinate-wise
optimal point under some mild conditions. Before we proceed
to the details, we would like to introduce some basic concepts
and results of block coordinate descent (BCD) method [25]
(a.k.a. alternating optimization [26]). Without loss of generality,
we discuss the case of minimizing a function fðx1; x2; . . . ; xNÞ
with eachxi denoting one block of variables. In each iteration,
BCD optimizes one block of variables while fixing the other
blocks. A basic cyclic rule is to choose the same block for
iterations k, kþN , kþ 2N , . . . , for k ¼ 1; . . . ; N . We restate
Theorem 4.1(c) in [25] as a lemma below:

Lemma 5. Assume that the level set X0 ¼ fx : fðxÞ � fðx0Þg is
compact and that f is continuous on X0. Then the sequence
fxr ¼ ðxr1; xr2; . . . ; xrNÞgr¼0;1;... generated by block coordinate

descent is defined and bounded. Moreover, if fðx1; . . . ; xNÞ has
at most one minimum in xk for k ¼ 2; . . . ; N � 1, and the cyclic
rule is used, then every cluster point z of fxrgr	ðN�1ÞmodN is a

coordinate-wise minimum point of f .

Based on the lemma, we have the following theorem:

Theorem 6. Qði;tÞ converges to a coordinate-wise optimal point
following our algorithm, if the kith and ðki þ 1Þth singular
values of Pt

i defined in (14) are different in each iteration.

Proof. Clearly, F4 in (18) is continuous with respect to Qði;tÞ.
If the ki and ðki þ 1Þth singular values of Pt

i defined in (14)
are different, we have a unique Qði;tÞ that equals to the
outer product of the top kti left singular vectors ofPt

i . If this
is always the case, i.e., F4 has at most one minimum for

each block optimization, Qði;tÞ converges to a coordinate-

wise minimum point of F4 according to Lemma 5. tu
Theorem 7. Our temporally regularized clustering algorithm

approaches a stationary point for fCði;tÞg if the kith and

ðki þ 1Þth singular values of Pt
i defined in (14) are different in

each iteration.

Proof. Based on Theorem 6, fQði;tÞg converges to a coordi-

nate-wise minimum point if the kith and ðki þ 1Þth
singular values of Pt

i are always different. Let Cði;tÞ be

the corresponding decomposition of the limiting point

Qði;tÞ following (19). To prove that the limiting pointCði;tÞ is

a stationary point, we can show that the gradient of the

objective function within the feasible domain is 0.

Specifically, we show that the gradient of the objective

function projected into the tangent space of the feasible

domain is 0. For notation convenience, we writeCði;tÞ asC,

and Mt
i as M in the subsequent proof.

Let Qði;tÞ denote the limiting point, i.e., a coordinate-
wise optimal point. Its corresponding C must satisfy
Theorem 3. In other words,

MC ¼ C�; ð20Þ

where � denotes a diagonal matrix of the top eigenvalues

of M. Following (15), F3 in terms of C can be written as

F3ðCÞ ¼ tr CTMC
� �

þ const;

with M defined in (17). So the gradient of F3 with respect

to C is

gðCÞ ¼ 2MC: ð21Þ

Recall that C 2 IRni�ki is column orthogonal, which
forms a smooth Stiefel manifold [27] of dimension
niki � kiðki þ 1Þ=2. The projection of any Z 2 IRni�ki onto
the tangent space of the manifold [28] is

�T ðZÞ :¼ C C
TZ � ZTC

2
þ ðI � CCT ÞZ: ð22Þ

Hence, the gradient gðCÞ projected into C’s tangent

space is

�T ðgðCÞÞ

¼ C 2CTMC � 2CTMTC

2
� 2ðI � CCT ÞMC

¼ �2ðI � CCT ÞMC ð23Þ

¼ �2ðI � CCT ÞC�

¼ 0;
ð24Þ

where (23) follows from the symmetry of M, and (24)

follows from the fact that C corresponds to the top

eigenvectors of M as stated in (20). Hence, the projected

gradient of F3 with respect to C within the feasible

domain (the Stiefel manifold) is zero. Since the objective

function is continuously differentiable and the projected

gradient is zero for all the blocks of variables, the final

solution of fCg is a stationary point (critical point). tu
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In Theorems 6 and 7, we require each block optimization

step to satisfy certain properties for singular values. A

simple strategy to check whether or not our solution is a

stationary point, is to verify whether there is any case that

the ki and ðki þ 1Þth singular values of Pt
i are exactly the

same. In real-world multimode networks, this rarely

happens due to noise. Hence, this convergence result is

valid in general.
We want to emphasize that it is improper to use the

difference of Cði;tÞ between iterations as a guide for

convergence verification. As shown in Theorem 3, the

optimal Ct
i corresponds to the top left-singular vectors,

which is not unique. But this does not refrain the algorithm

from reaching a stationary point at the end. A proper

convergence criterion is the difference of Qði;tÞ between

iterations is sufficiently small. But Qði;tÞ is a full matrix of

size ni � ni, which might be computationally expensive.

Since the obtained Cði;tÞ is an approximate community

indicator matrix, exact convergence may not be necessary.

For practical use, it works fine to simply check whether the

objective value of F3 stabilizes.

5 EXPERIMENTS ON SYNTHETIC DATA

Three methods are compared: static, online, and our

proposed temporally regularized multimode clustering

(denoted as Static, Online, and Regularized, respectively).

Static clustering is the baseline approach, as it does not

consider any temporal regularization. Static clustering

performs clustering independently for each network snap-

shot by solving the formulation F1 in (5). For completeness,

we also include the result of online clustering (as mentioned

in Section 3.4).
Typically, real-world data does not contain the ground

truth required for validation, i.e., the community member-

ship of actors at different timestamps. Therefore, we first

resort to synthetic data to show the efficacy of our

proposed algorithm.

5.1 Experiment Setup

We construct a synthetic network of three modes with 2, 3,

and 4 clusters, and 50, 100, and 200 actors, respectively.

Interactions occur between each pair of modes. To generate

the interaction, we

. determine the latent community for each actor; and

. generate interactions following a Bernoulli distri-
bution based on the group identity of two
interacted entities.

To simulate evolution, we generate interactions at different

timestamps as follows:

. At each timestamp, a certain percentage (5-20 per-
cent) of actors switch to another group different
from that of the previous timestamp. This is to
simulate the community evolution.

. The between-group interaction probability is
sampled with a Gaussian distribution centered on
the probability of the previous timestamp. This is to
simulate the interaction change.

. Noise is inserted at each timestamp. For example,
given noise level 0.2, approximately 20 percent of
entries in the interaction matrix are randomly
selected to set to 0, and then another 20 percent of
entries are randomly selected to set to 1. The noise is
independent of latent group structure. Hence, the
higher the noise level, the less observable a commu-
nity structure is in the interaction.

To study the property of different clustering ap-

proaches, we generate data of various noise levels. For

each level, 100 synthetic networks are constructed. For

simplicity, we set all the weights wði;jÞa and wib in (9) to 1.

An algorithm runs until the relative change of its objective

function is less than 10�6. Normalized mutual information

(NMI) [29] is adopted to evaluate the clustering perfor-

mance. Let �a; �b denote two different partitions of

communities. NMI is defined as

NMI ¼

PkðaÞ

h¼1

PkðbÞ

‘¼1 nh;‘ log
n
nh;l
n
ðaÞ
h

nðbÞ
‘

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkðaÞ

h¼1 n
ðaÞ
h log

na
h

n

� � PkðbÞ

‘¼1 n
ðbÞ
‘ log

nb
‘

n

� �r ;

where n is the total number of data instances, kðaÞ and kðbÞ

represent the number of communities in partition �a and �b,

respectively, and nah, nb‘, and nh;‘ are, respectively, the

numbers of actors in the hth community of partition �a, in

the ‘th community of partition �b, and in both the

hth community of �a and ‘th community of �b. NMI is a

measure between 0 and 1. NMI equals 1 when two partitions

are equivalent.

5.2 Experiment Results

The average performance over 100 runs is reported in

Table 2. As seen in the table, performance deteriorates as

noise increases. In most cases, our proposed temporally

regularized multimode clustering outperforms the other

two. Generally speaking, regularized clustering outper-

forms online clustering, and online clustering outperforms

static clustering. We notice that when the noise is high (e.g.,

noise level is 0.55), the smoothness of community structure

between consecutive timestamps is destroyed. Thus,

temporally regularized clustering performs worse than

static clustering.
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TABLE 2
Average NMI on Synthetic Data over 100 Runs

The noise level is gradually increased from the top to the bottom. Bold
entries denote the best one among the three methods: static, online, and
temporally regularized multimode clustering.



We also plot the average computation time in Fig. 6. The
computation time tends to increase with increasing noise.
Static clustering takes the least time, and online clustering is
comparable. Temporally regularized clustering requires
more time. This is especially problematic when the noise
level is very high. In that case, the temporal smoothness is
disturbed. Many more iterations thus are required by our
algorithm to find an optimal.

In order to show the effect of parameter tuning, we pick
one data set of medium noise level and apply both online
clustering and temporally regularized multimode cluster-
ing with temporal weights wb varying from 0.01 to 1,000 and
wa fixed to 1. As shown in Fig. 7, it might worsen the
performance if the temporal weight is too large, i.e., when
the temporal regularization dominates. Most of the time, it
helps clustering to take into account the temporal informa-
tion. This is evident when the temporal weight is within the
range of 0.01 and 100.

6 EXPERIMENTS ON REAL-WORLD DATA

In this section, we compare different clustering schemes on
real-world data sets. Two publicly available network data
sets are selected: Enron email corpus3 and DBLP data.4 We
show the construction of multimode networks from these
two data sets, discuss the evaluation methodology without
ground truth, and then present empirical comparisons with
some case studies.

6.1 Data Sets

Enron data [30] provide email documents collected from
150 senior executives in the Enron company. Based on their
email communications, a 3-mode network (user, email,
words) is constructed in each month. We focus on users
(i.e., email addresses) who send and receive at least five
emails, resulting in 2,359 users in total. In addition, we
remove top frequent words occurring in more than
19,000 documents, and those infrequent words with
document frequency less than 10, resulting in a vocabulary
of 36,658 words. Because of the data collection problem,
email traffic is low in the first few years. Hence, we consider
only the time period with reasonable number of email
communications (April, 2001 to March 2002). In each
month, there are three interactions: sender-email, email-
receiver, and email-words. The weights of email-receiver
interaction are normalized by the number of receivers. We

notice that some words occur very frequently in one email.
To avoid the dominance of these bursty words, we set the
entries of email-word interaction to be logðword freqÞ þ 1.

As for DBLP data, four modes are considered: papers,
authors, terms (words extracted from the title), and venues
(conference or journal names). We extract papers published
during 1980-2004, remove those papers without authors or
venue information, discard stop words and terms with low
document frequency (less than 20). Eventually, the data
contains 491,726 papers, 347,013 authors, 2,826 venues, and
9,523 terms. Both processed data sets are publicly available
at the first author’s homepage.

6.2 Evaluation Methodology

Different from synthetic data, no ground truth of commu-
nity membership is available for real-world data. NMI
cannot be employed to evaluate performance. Alternatively,
we present an approach to compare the relative perfor-
mance of different methods based on the approximation
error of interactions and a block structure. Below, we use
Enron data as an example to show the evaluation
methodology. A similar strategy can be derived for the
DBLP data.

We follow standard cross validation to split the Enron
data of each month into two portions. The first half is used
for training, to obtain the clusters of users and words. The
remaining half is used to measure how the cluster
approximates the interaction. Notice that there is no
overlap between training and test documents, so the
clustering result of emails cannot be verified. Therefore,
we focus only on the block approximation of words and
users in the test data.

Given an interaction matrix Remail;i between email and
another mode XXi (sender, receiver, or words) for testing,
Remail;i can be factored into the following form based on
block model approximation:

Remail;i � CemailACT
i :

Here, Ci denotes the cluster membership of mode i
obtained from training data. To measure the quality of Ci,
one natural solution is to use the approximation error
kRemail;i � CemailACT

i kF . Note that in test data, both Cemail
and A are not known. We combine these two variables into
one single variable B such that B ¼ CemailA. Then we can
approximate Remail;i in terms of Ci as follows:

min
B
kRemail;i �BCT

i k
2
F :
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Fig. 7. Performance sensitivity to temporal weight.

3. http://ciir.cs.umass.edu/%7Ecorrada/enron/.
4. http://kdl.cs.umass.edu/data/dblp/dblp-info.html.

Fig. 6. Computation time of different methods.



It is not difficult to verify that the minimal value is

kRemail;ik2
F � kRemail;iCik2

F , obtained when B ¼ RCi. Since

kRemail;ik2
F is a constant, the cluster assignment that max-

imizes kRemail;iCik2
F yields a low approximation error.

Therefore, the clustering quality can be measured as follows:

Clustering-QualityðCiÞ ¼ kRemail;iCik2
F :

A larger value indicates a better clustering result.
This evaluation strategy approximates a sparse inter-

action matrix with group interaction blocks. Even with
the true latent community structure, the approximation
error could still be huge. It is not appropriate to
determine the significance of improvement by looking at
the absolute value directly. This metric is adopted mainly
to compare the relative performance of different methods.

6.3 Performance Comparison

For simplicity, all the input weights of the algorithm in Fig. 4
are set to 1. The number of communities of each mode is
fixed to 50 and 20 for Enron and DBLP, respectively.

Table 3 summarizes the performance of different
methods on Enron data. Online clustering, as shown in
the table, yields a limited improvement. Most of the time,
our proposed regularized clustering works the best. It is
observed that in 10/2001, 11/2001, and 01/2002, static

multimode clustering is the winner. This can be explained
by email traffic as shown in Fig. 8. The email communica-
tion is abundant in the three months. Since sufficient data
were provided, clustering without considering temporal
information works well. Our proposed regularized multi-
mode clustering, in a sense, compensates for the data
shortage problem by taking into account the cluster
structure at neighboring timestamps. When data are
sufficient as in those three months, the temporal regular-
ization becomes unnecessary.

As for DBLP data, a similar trend is observed as shown
in Table 4. Temporally regularized clustering often outper-
forms other two again. Online clustering usually performs
better than clustering without temporal regularization.
Static clustering, without considering temporal regulariza-
tion, tends to overfit the training data with a poor latent
community structure. In general, taking into account the
temporal smoothness helps extract a more accurate com-
munity structure.

6.4 Case Studies

In previous sections, we showed that temporally regular-
ized clustering tends to outperform those methods without
considering the temporal information. But one question
remains: dose it discover meaningful communities and
evolutions in reality? Here, we show some examples in
DBLP data.
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Fig. 8. Emails sent each month in Enron Data. In Oct. 2001, Nov. 2001,
and Jan. 2002, heavier email traffic is observed.

TABLE 3
Performance on Enron Data Based
on One Year Network Information

Static in the first row represents clustering without any temporal
information; Online an online version of temporally regularized cluster-
ing; and Regularized our proposed temporally regularized multimode
clustering. The bold entry in each row represents the best performance
of the three approaches.

TABLE 4
Performance on DBLP Data (�104)

TABLE 5
Venue Community Focusing on Web in 2004



Table 5 shows one example of venue community
extracted based on our method. The publication venues in
this community are mostly about Web. Table 6 shows
another example of venue community associated with NIPS
(a conference on Neural Information Processing System) in
2004. As seen in the table, most of those conferences are
related to machine learning. However, we found the
following group associated with NIPS in 1995:

Here, Neural Networks is a journal. NIPS at that moment
focused more on neural network and neurobiology related
problems. Thus, it is not surprising that NIPS and Neural
Network are assigned to the same group. This indicates that
our method discovered sensible communities and detected
the evolution of groups over time.

Next, we check the groups in the author mode. Since (tens
of) thousands of authors are involved each year in the
multimode network, a community is typically composed of
hundreds of authors. It is not convenient to present evolution
patterns directly. Alternatively, we pick one target actor and
show those actors who are often assigned into the same
community with him across years. Specifically, after tempo-
rally regularized multimode clustering, each actor is asso-
ciated with a community membership vector ðc1

a; c
2
a; . . . ; cTTa Þ,

where cta denotes community membership of actor a at
timestamp t. Given a target actor a and another actor b, we
compute the similarity between the two as follows:

simða; bÞ ¼
XTT
t¼1

�
�
cta; c

t
b

�
;

with � function defined below:

�ðx; yÞ ¼ 1; if x ¼ y;
0; otherwise:

�

The similarity between a target actor and all the remaining
ones can be computed.

Three researchers, Jiawei Han, Michael I. Jordan, and
Subbarao Kambhampati are selected as the target actor,
respectively. Those top-ranking similar actors of each case
are shown in Table 7. As seen in the table, most of the
researchers in the first column concentrate on data mining
or data base, which is consistent with Jiawei Han’s research
work. For Michael I. Jordan, his similar actors are mostly
working on machine learning (theory) and computational
neurobiology. Subbarao Kambhampati is a prestigious re-
searcher on planning. These years, his research also
expands to data and information integration. It is not
surprising that we find similar researchers from both fields
for him. For example, Qiang Yang, Biplav Srivastava, and
Kathryn B. Laskey are working on planning related pro-
blems, while the remaining ones are mostly working on
data integration, database systems, and information retrie-
val. It is observed that most of those selected actors are
actually not coauthors of the target actor, but those who
work in similar areas and publish in related conferences
and journals. This is because we consider multimode
information including publication venues and title terms
to help discover groups.

7 RELATED WORK

7.1 Community Detection

An extensive body of work studies the structural property
of interactions between actors. One probabilistic approach
is the stochastic block model [19], in which the link between
actors is generated conditioned on the latent cluster
membership of actors. Two actors within the same cluster
are stochastically equivalent. That is, the interactions between
ðA1; B1Þ and ðA2; B2Þ have the same probability if A1 and
A2, B1 and B2 belong to the same cluster, respectively. In
classic block models, the number of clusters is fixed. The
work in [31] replaces the constraint by assigning a Chinese
restaurant process as a prior to generate cluster member-
ship for each actor, thus the number of clusters can be
automatically determined by assigning a proper prior.
Mixed block model is also developed [32]. Long et al. [12]
propose a similar probabilistic framework to handle multi-
mode networks with interactions and actor attributes. Topic
models [33] are also extended to model documents within a
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TABLE 6
Venue Community Associated with NIPS in 2004

TABLE 7
Researchers Working on Similar Areas across Years



social network [34], [35], [36]. Typically, they are specific for

a certain type of documents like Emails or papers.
Another attempt to model the structure is the latent

space model. Intuitively, latent space models map actors to

a latent low-dimensional space such that the actors whose

positions are closer are more likely to interact with each

other [37], [38]. Globerson et al. [39] study a two-mode

network (authors and words) and map both authors and

words into the same euclidean space.
Spectral relational clustering, relevant to multimode

networks, tries to discover latent community structures
based on multiple relational tables. As the original
problem of finding discrete cluster assignment (e.g., the
entries of membership vector are either 0 or 1) is NP-hard,
spectral clustering relaxes the constraint to allow the
membership vector to be continuous. The initial work of
coclustering [40], [20], [17], tries to address the problem of
clustering both words and documents simultaneously by
taking advantage of the structure of a bipartite. Gao et al.
[41] extend the problem to a star-typed network with
multiple heterogeneous objects, and propose semidefinite
programming to solve the problem. Alternatively, reinfor-
cement clustering is proposed [10]. Long et al. [11] present
a general spectral clustering framework to handle multi-
type relational clustering with different kinds of objects
and attributes, and an alternating optimization algorithm
is presented to find a solution.

7.2 Community Evolution

Temporal change of social networks has been attracting
increasing attention [13], [42], [43]. It is empirically
observed that some real-world networks are evolving [14].
Practitioners try to investigate how a network evolves and
what might be a reasonable generative process to model the
dynamics [16]. The critical factors to determine the group
evolution are also reported [15].

On the other hand, evolutionary clustering [44] is

developed. It assumes clustering result of current situation

is similar to that of previous timestamps. Given multiple

snapshots of network data, evolutionary clustering finds

out a sequence of clustering with temporal smoothness [45],

[46]. A Bayesian interpretation is presented in [47]. The

latent space model with temporal change is also developed

[48]. Tantipathananandh et al. [49] propose a general

framework to handle dynamic single-mode network by

casting it as a graph coloring problem and some greedy

heuristics or approximation algorithms [50] are developed

to handle large-scale data. Sun et al. [51] address the group

evolution problem from an information-theoretic view.

They present a scheme that detects not only the community

structure but also the change point. As existing evolu-

tionary approaches often require a specified number of

clusters at each time stamp, (hierarchical) Dirichlet process

is employed so that this parameter can be learned

automatically from data [52], [53]. Most of the aforemen-

tioned works focus on data with attributes or single-mode

networks. In this work, we explore the community

evolution in multimode networks.

8 CONCLUSIONS AND FUTURE WORK

In some real-world applications, actors of various types
interact with each other, resulting in a multimode network.
In such a network, different modes of actors form their own
communities and tend to evolve gradually. In this work, we
propose a temporally regularized multimode clustering
algorithm to identify evolving groups in dynamic multi-
mode networks. We show that this algorithm can be
interpreted as an iterative-LSA process, with attributes
being community indicators at different modes and
neighboring timestamps. Based on this attribute view, it is
easy to extend this algorithm to handle networks with
attributes, within-mode interactions, and dormant and
emerging actors. In addition, we show that this algorithm
is guaranteed to converge to a local optimal solution. We
applied our framework to both synthetic data sets and real-
world multimode networks of large sizes. It is empirically
demonstrated that our algorithm tends to find more
accurate community structures and evolutions given a
sequence of network snapshots.

This work is a solid yet initial attempt to identify
evolving groups in dynamic multimode networks. With the
current framework, we envision several directions to
explore for future work.

. The current framework needs users to provide
weights for different interactions and temporal
information, as well as the number of communities
in each mode. It is challenging to automatically
determine the weights and number of communities.
Another possible extension is to consider the
evolution of group interaction. Currently, our model
considers only the group membership change. But
interactions between groups may also change
gradually. It requires further research to simulta-
neously capture both the microlevel evolution of
actors and macrolevel evolution of groups.

. With large-scale networks, the scalability of one
proposed method becomes a critical issue. Some
statistical patterns presented in complex networks
such as power law distribution for node degrees
can be employed to address the scalability. For
instance, Java et al. [54] propose to sort nodes
based on their degrees and perform matrix factor-
ization to a small subset of nodes with high degrees
(as only a small portion of nodes are highly
connected). Based on the factorization, the group
membership of remaining nodes with few degrees
can be identified via Nystrom’s method [55] or
certain heuristics. We believe such a scheme can be
applied to handle large-scale multimode networks
as well.

. Most existing clustering algorithms assign an entity
to a single group. In reality, actors can be involved in
multiple different communities. A viable solution to
handle the overlapping nature of communities is
edge-view community detection [56]. In the work, a
community is defined as a set of edges rather than
nodes as in most existing work. One node is
associated with one community if any of its
connections is inside the community. By partitioning
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edges into disjoint sets, one node can be associated
with multiple different communities. We are cur-
rently working on extending this edge-view com-
munity detection from single-mode networks to
multimode networks.

. Our proposed temporally regularized multimode
clustering algorithm smooths clustering results of
neighboring timestamps. This is a reasonable
regularization when networks are evolving slowly
or gradually. But this smoothing effect might miss
or delay the detection of an unprecedented event or
major accident which could lead to sharp changes. It
is quite interesting to demarcate those timestamps
indicative of drastic changes. Moreover, in reality, a
network of a history of continuous interactions is
the norm. It presents a new challenge to separate
these continuous interactions into multiple snap-
shots. One possible solution is to cluster neighbor-
ing network interactions over time such that the
group structure within the same time cluster is kept
relatively stable or smooth. We are currently
investigating methods along this direction and plan
to apply them to dynamic multimode networks in
social media sites to study user grouping and
behavior patterns.
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